Collusion Among Adversaries

Matt Malis

Political Economy of Conflict Workshop Vanderbilt University 4 March 2025

Slides: mattmalis.github.io/slides

Overview

Intuitive logic of provocation:

- A wants conflict, but wants B to attack first
- ► A says or does something (essentially costless) to "provoke" B
- B attacks, fighting ensues

Intuitive logic of provocation:

- A wants conflict, but wants B to attack first
- ► A says or does something (essentially costless) to "provoke" B
- B attacks, fighting ensues

Historical examples:

- ▶ Franco-Prussian War, 1870
 - Ems Dispatch: "effect of a red rag upon the Gallic bull"

2 / 26

Intuitive logic of provocation:

- A wants conflict, but wants B to attack first
- ► A says or does something (essentially costless) to "provoke" B
- B attacks, fighting ensues

Historical examples:

- ▶ Franco-Prussian War, 1870
 - Ems Dispatch: "effect of a red rag upon the Gallic bull"
- South Korean martial law episode, 2024
 - "provoke the North's attack at the NLL [Northern Limit Line]"

Intuitive logic of provocation:

- A wants conflict, but wants B to attack first
- ► A says or does something (essentially costless) to "provoke" B
- B attacks, fighting ensues

Historical examples:

- ▶ Franco-Prussian War, 1870
 - Ems Dispatch: "effect of a red rag upon the Gallic bull"
- South Korean martial law episode, 2024
 - "provoke the North's attack at the NLL [Northern Limit Line]"
- US entry into WWII; Gulf of Tonkin; Iraq invasion

Puzzle:

- ▶ How can it be both in A's interest to provoke B...
 - ...and in B's interest to be provoked?

Puzzle:

- How can it be both in A's interest to provoke B...
 - ...and in B's interest to be provoked?
- How can costless communication between adversaries be informative and influential?

This paper:

Formal model of diplomacy and domestic politics

- Formal model of diplomacy and domestic politics
- Demonstrates how provocation can be:
 - in the interest of both leaders
 - achieved through cheap-talk communication (private or public)

- Formal model of diplomacy and domestic politics
- Demonstrates how provocation can be:
 - in the interest of both leaders
 - achieved through cheap-talk communication (private or public)
- Intuition:
 - A and B collude against A's domestic opposition, to extract a divisible benefit

- Formal model of diplomacy and domestic politics
- Demonstrates how provocation can be:
 - in the interest of both leaders
 - achieved through cheap-talk communication (private or public)
- Intuition:
 - A and B collude against A's domestic opposition, to extract a divisible benefit
 - B making the first move toward conflict can be:
 - advantageous to B, for security reasons
 - advantageous to A, for domestic political reasons

- Formal model of diplomacy and domestic politics
- Demonstrates how provocation can be:
 - in the interest of both leaders
 - achieved through cheap-talk communication (private or public)
- Intuition:
 - A and B collude against A's domestic opposition, to extract a divisible benefit
 - *B* making the first move toward conflict can be:
 - advantageous to B, for security reasons
 - advantageous to A, for domestic political reasons
 - communication allows them to coordinate their actions to realize these benefits

Outline:

- Model without communication (i.e. without provocation)
- Model with private communication
- Extension: public communication
- Cases

Three players:

- leader A
- domestic audience D (in A's country)
- leader/state B (unitary actor)

Three players:

- leader A
- domestic audience D (in A's country)
- leader/state B (unitary actor)

Sequence:

1. A and B types drawn by nature, observed privately

Three players:

- leader A
- domestic audience D (in A's country)
- leader/state B (unitary actor)

- 1. A and B types drawn by nature, observed privately
- 2. *B*: mobilize for conflict (z = 1) or not (z = 0)

Three players:

- ▶ leader A
- domestic audience D (in A's country)
- leader/state B (unitary actor)

- 1. A and B types drawn by nature, observed privately
- 2. *B*: mobilize for conflict (z = 1) or not (z = 0)
- 3. D observes: B's action z, and signal x of A's type

Three players:

- leader A
- domestic audience D (in A's country)
- leader/state B (unitary actor)

- 1. A and B types drawn by nature, observed privately
- 2. *B*: mobilize for conflict (z = 1) or not (z = 0)
- 3. D observes: B's action z, and signal x of A's type
 - D: retain the incumbent leader (r = 1) or replace her (r = 0)

Three players:

- leader A
- domestic audience D (in A's country)
- leader/state B (unitary actor)

Sequence:

- 1. A and B types drawn by nature, observed privately
- 2. *B*: mobilize for conflict (z = 1) or not (z = 0)
- 3. D observes: B's action z, and signal x of A's type

D: retain the incumbent leader (r = 1) or replace her (r = 0)

4. A and B simultaneously: cooperate $(d_i = 0)$ or defect $(d_i = 1)$

Interpretations

Main interpretation:

- D as voter, or ruling coalition member
- can retain or remove A as leader

Interpretations

Main interpretation:

- D as voter, or ruling coalition member
- can retain or remove A as leader

Alternative interpretation 1 (formally equivalent):

D as civilian leader, A as military

Interpretations

Main interpretation:

- D as voter, or ruling coalition member
- can retain or remove A as leader

Alternative interpretation 1 (formally equivalent):

D as civilian leader, A as military

Alternative interpretation 2 (some formal changes):

D as legislature, can authorize war or not

Sequence:

- 1. A and B types drawn by nature, observed privately
- 2. *B*: mobilize for conflict (z = 1) or not (z = 0)
- 3. D observes: B's action z, and signal x of A's type

D: retain the incumbent leader (r = 1) or replace her (r = 0)

4. A (or A') and B: cooperate $(d_i = 0)$ or defect $(d_i = 1)$

- 1. A and B types drawn by nature, observed privately
- 2. *B*: mobilize for conflict (z = 1) or not (z = 0)
 - build arms; mobilize troops; seek external support; first strike
 - action that improves B's conflict payoffs, worsens A's
- 3. D observes: B's action z, and signal x of A's type
 - D: retain the incumbent leader (r = 1) or replace her (r = 0)
- 4. A (or A') and B: cooperate $(d_i = 0)$ or defect $(d_i = 1)$

Sequence:

- 1. A and B types drawn by nature, observed privately
- 2. *B*: mobilize for conflict (z = 1) or not (z = 0)
- 3. D observes: B's action z, and signal x of A's type

•
$$Pr(x = \tilde{H}|\theta = H) = Pr(\tilde{L}|L) = \tau \in (\frac{1}{2}, 1)$$

D: retain the incumbent leader (r = 1) or replace her (r = 0)4. A (or A') and B: cooperate $(d_i = 0)$ or defect $(d_i = 1)$

Sequence:

- 1. A and B types drawn by nature, observed privately
- 2. *B*: mobilize for conflict (z = 1) or not (z = 0)
- 3. *D* observes: *B*'s action z, and signal x of *A*'s type

D: retain the incumbent leader (r = 1) or replace her (r = 0)

• if replace: draw new A', from same distribution as A

4. A (or A') and B: cooperate $(d_i = 0)$ or defect $(d_i = 1)$

Sequence:

- 1. A and B types drawn by nature, observed privately
- 2. *B*: mobilize for conflict (z = 1) or not (z = 0)
- 3. D observes: B's action z, and signal x of A's type

D: retain the incumbent leader (r = 1) or replace her (r = 0)

8 / 26

4. A (or A') and B: cooperate $(d_i = 0)$ or defect $(d_i = 1)$

	$d_B = 0$	$d_B = 1$
$d_A = 0$	0,0	$p_B - \alpha_i c_A^{\theta} - z\lambda, (1 - p_B) - c_B^t + z\delta$
$d_A = 1$	$p_A - lpha_i c_A^{ heta} - z\lambda, \ (1 - p_A) - c_B^t + z\delta$	$p_{AB} - lpha_i c_A^ heta - z\lambda, \ (1 - p_{AB}) - c_B^t + z\delta$

Figure: Conflict payoffs $W_i(d_A, d_B; z)$

Figure: Conflict payoffs $W_i(d_A, d_B; z)$

	$d_B = 0$	$d_B = 1$
$d_A = 0$	0,0	$p_B - \alpha_i c_A^{\theta} - z\lambda, (1 - p_B) - c_B^t + z\delta$
$d_A = 1$	$p_{A} - \alpha_{i}c_{A}^{\theta} - z\lambda, (1 - p_{A}) - c_{B}^{t} + z\delta$	$p_{AB} - \alpha_i c_A^{\theta} - z\lambda, (1 - p_{AB}) - c_B^t + z\delta$

Figure: Conflict payoffs $W_i(d_A, d_B; z)$

	$d_B = 0$	$d_B = 1$
$d_A = 0$	0,0	$ \begin{aligned} \mathbf{p}_B &- \alpha_i c_A^{\theta} - z\lambda, \\ & (1 - \mathbf{p}_B) - c_B^t + z\delta \end{aligned} $
$d_A = 1$	$ \begin{array}{l} \mathbf{p}_{\mathcal{A}} - \alpha_i \mathbf{c}_{\mathcal{A}}^{\theta} - z\lambda, \\ (1 - \mathbf{p}_{\mathcal{A}}) - \mathbf{c}_{\mathcal{B}}^t + z\delta \end{array} $	$egin{aligned} & \mathbf{p}_{AB} - lpha_i c^{ heta}_A - z\lambda, \ & (1 - \mathbf{p}_{AB}) - c^t_B + z\delta \end{aligned}$

 $\blacktriangleright p_A > p_{AB} > p_B$

first-strike advantage, or enhanced bargaining leverage

if i expects j to defect, i's BR is defect

Figure: Conflict payoffs $W_i(d_A, d_B; z)$

	$d_B = 0$	$d_B = 1$
$d_A = 0$	0,0	$p_B - \alpha_i c_A^{\theta} - z\lambda, (1 - p_B) - c_B^t + z\delta$
$d_A = 1$	$p_{A} - \alpha_{i}c_{A}^{\theta} - z\lambda, (1 - p_{A}) - c_{B}^{t} + z\delta$	$p_{AB} - \alpha_i c_A^{\theta} - z\lambda, (1 - p_{AB}) - c_B^t + z\delta$

- mobilizing improves *B*'s conflict payoffs $(+z\delta)$
 - worsens A's conflict payoffs $(-z\lambda)$
- $\delta > p_{AB} p_B$
 - preparing in advance > catching A off-guard

Figure: Conflict payoffs $W_i(d_A, d_B; z)$

	$d_B = 0$	$d_B = 1$
$d_A = 0$	0,0	$p_B - \alpha_i c_A^{\theta} - z\lambda, (1 - p_B) - c_B^t + z\delta$
$d_A = 1$	$p_{A} - \alpha_{i} c_{A}^{\theta} - z\lambda, (1 - p_{A}) - c_{B}^{t} + z\delta$	$p_{AB} - \alpha_i c_A^{\theta} - z\lambda, (1 - p_{AB}) - c_B^t + z\delta$

• A types,
$$\theta \in \{L, H\}$$
, with $c_A^L < c_A^H$

• prior
$$Pr(A_H) = \pi_A$$

▶ *B* types,
$$t \in \{\ell, m, \hbar\}$$
, with $c_B^{\ell} < c_B^m < c_B^{\hbar}$
▶ prior $\pi_B^{\ell} + \pi_B^m + \pi_B^{\hbar} = 1$

Iow types = more "hawkish": strictly prefer defecting

- high/moderate types = more "dovish", conflict-averse
 - pref. for coop/defect conditional on other side's action

Figure: Conflict payoffs $W_i(d_A, d_B; z)$

	$d_B = 0$	$d_B = 1$
$d_A = 0$	0,0	$p_B - \frac{\alpha_i}{c_A^{\theta}} - z\lambda,$ (1 - p_B) - c_B^t + z\delta
$d_A = 1$	$p_{A} - \frac{\alpha_{i}c_{A}^{\theta} - z\lambda}{(1 - p_{A}) - c_{B}^{t} + z\delta}$	$p_{AB} - rac{lpha_i}{c_A^{ heta}} - z\lambda, \ (1 - p_{AB}) - c_B^t + z\delta$

•
$$\alpha_A = 1$$
, and $\alpha_D >> 1$

- D shares A_H 's preference for mutual cooperation
- but, conditional on conflict happening, D prefers A_L in office

- 1. A and B types drawn by nature, observed privately
- 2. *B*: mobilize for conflict (z = 1) or not (z = 0)
- 3. D observes: B's action z, and signal x of A's type
 - D: retain the incumbent leader (r = 1) or replace her (r = 0)
- 4. A and B simultaneously: cooperate $(d_i = 0)$ or defect $(d_i = 1)$

Sequence:

- 1. A and B types drawn by nature, observed privately
- 2. *B*: mobilize for conflict (z = 1) or not (z = 0)
- 3. D observes: B's action z, and signal x of A's type
 - D: retain the incumbent leader (r = 1) or replace her (r = 0)
- 4. A and B simultaneously: cooperate $(d_i = 0)$ or defect $(d_i = 1)$

Total payoffs:

Sequence:

- 1. A and B types drawn by nature, observed privately
- 2. *B*: mobilize for conflict (z = 1) or not (z = 0)
- 3. D observes: B's action z, and signal x of A's type
 - D: retain the incumbent leader (r = 1) or replace her (r = 0)
- 4. A and B simultaneously: cooperate $(d_i = 0)$ or defect $(d_i = 1)$

Total payoffs:

- $\bullet \ U_A = r(\psi + W_A)$
 - \blacktriangleright officeholding value ψ large
Game setup, without communication

Sequence:

- 1. A and B types drawn by nature, observed privately
- 2. *B*: mobilize for conflict (z = 1) or not (z = 0)
- 3. D observes: B's action z, and signal x of A's type
 - D: retain the incumbent leader (r = 1) or replace her (r = 0)
- 4. A and B simultaneously: cooperate $(d_i = 0)$ or defect $(d_i = 1)$

Total payoffs:

- $\bullet \ U_A = r(\psi + W_A)$
 - \blacktriangleright officeholding value ψ large
- $U_D = W_D$

Game setup, without communication

Sequence:

- 1. A and B types drawn by nature, observed privately
- 2. *B*: mobilize for conflict (z = 1) or not (z = 0)
- 3. D observes: B's action z, and signal x of A's type
 - D: retain the incumbent leader (r = 1) or replace her (r = 0)
- 4. A and B simultaneously: cooperate $(d_i = 0)$ or defect $(d_i = 1)$

Total payoffs:

- $\bullet \ U_A = r(\psi + W_A)$
 - \blacktriangleright officeholding value ψ large
- $U_D = W_D$
- $U_B = W_B z\kappa$
 - direct cost of mobilizing $\kappa \ge 0$

Equilibrium, without communication

Non-communication equilibrium

- B's mobilization strategy:
 - B^{ℓ} always mobilizes (z = 1)
 - B^{\hbar} never mobilizes (z = 0)
 - B^m mobilizes iff $\pi_A < \overline{\pi}_A$ ("low-trust" environment)
- D retains if signal of A's type matches B's action, i.e.:

r = 1 if
$$(x = \tilde{H}, z = 0)$$
 or $(x = \tilde{L}, z = 1)$

- r = 0 otherwise
- Conflict strategies:
 - B defect iff mobilized
 - A_L always defect; A_H defect iff B mobilized

 A_L and B^ℓ , always defect:

trivial (assumed preference for defecting)

 A_L and B^ℓ , always defect:

trivial (assumed preference for defecting)

 A_H and B^m , defect iff B mobilized:

• $z = 1 \implies \text{high } Pr(B^{\ell})$

• in reality, if $t \neq \ell$, both sides would prefer mutual cooperation

but no way for them to know this!

• defensive mobilization \implies mutual mistrust, mutual defection

Effects of B's mobilization:

1. improves B's conflict payoffs

Effects of B's mobilization:

- 1. improves B's conflict payoffs
- 2. signals B's hostility \implies influences A_H behavior

Effects of B's mobilization:

- 1. improves B's conflict payoffs
- 2. signals B's hostility \implies influences A_H behavior
- 3. signals B's hostility \implies makes D demand A_L over A_H

Effects of B's mobilization:

- 1. improves B's conflict payoffs
- 2. signals B's hostility \implies influences A_H behavior
- 3. signals B's hostility \implies makes D demand A_L over A_H

 B^{ℓ} never mobilizes:

reducing Pr(conflict) >> being prepared for conflict

Effects of B's mobilization:

- 1. improves B's conflict payoffs
- 2. signals B's hostility \implies influences A_H behavior
- 3. signals B's hostility \implies makes D demand A_L over A_H

 B^{ℓ} never mobilizes:

- reducing Pr(conflict) >> being prepared for conflict
- B^m , mobilize iff prior trust is low $(\pi_A < \overline{\pi}_A)$:
 - balancing value of reducing Pr(conflict) vs. being prepared

Inefficiency of the non-communication equilibrium

In a "high-trust" environment:

- B^m would want to mobilize if he knew A was A_L
 - doesn't know A's type, so defaults to z = 0

Inefficiency of the non-communication equilibrium

In a "high-trust" environment:

- B^m would want to mobilize if he knew A was A_L
 - doesn't know A's type, so defaults to z = 0
- A_L wants her audience to believe B is a threat
 - argument is undermined by B^m not mobilizing

Inefficiency of the non-communication equilibrium

In a "high-trust" environment:

- B^m would want to mobilize if he knew A was A_L
 - doesn't know A's type, so defaults to z = 0
- A_L wants her audience to believe B is a threat
 argument is undermined by B^m not mobilizing

Symmetrical problems in the "low-trust" environment

 \rightarrow mitigated by communication between A and B

Game setup, with communication

Sequence:

- 1. A and B types drawn by nature, observed privately
- 2. A: send private, costless message to B
 - conciliatory (s = 0) or hostile (s = 1)
- 3. B: mobilize for conflict (z = 1) or not (z = 0)
- 4. D observes: B's action z, and signal x of A's type
 - D: retain the incumbent leader (r = 1) or replace her (r = 0)
- 5. A and B simultaneously: cooperate $(d_i = 0)$ or defect $(d_i = 1)$

All other game features same as before

Game setup, with communication

Sequence:

- 1. A and B types drawn by nature, observed privately
- 2. A: send private, costless message to B
 - conciliatory (s = 0) or hostile (s = 1)
- 3. B: mobilize for conflict (z = 1) or not (z = 0)
- 4. D observes: B's action z, and signal x of A's type
 - D: retain the incumbent leader (r = 1) or replace her (r = 0)
- 5. A and B simultaneously: cooperate $(d_i = 0)$ or defect $(d_i = 1)$

All other game features same as before

Equilibrium with informative communication

Communication equilibrium

- A strategy:
 - A_L sends hostile message (s = 1)
 - A_H sends conciliatory message (s = 0)
- B strategy:
 - B^{ℓ} always mobilizes (z = 1)
 - B^{\hbar} never mobilizes (z = 0)
 - B^m mobilizes iff receives hostile message (z = s)
- D strategy (same as before):
 - retain if signal of A's type matches B's action, i.e.:
 - r = 1 if $(x = \tilde{H}, z = 1)$ or $(x = \tilde{L}, z = 0)$
 - r = 0 otherwise
- Conflict strategies:
 - A_L and B^ℓ always defect
 - other types: cooperate only if
 - (i) B did not mobilize, and
 - (ii) A sent s = 0, or new A' was selected

Figure: Path-of-play conflict behavior, (d_A, d_B)

Non-communication eqm

Private communication eqm Bℓ

1, 1

1, 1

 B^m

0,0

1, z

Z, Z

1,1 | 1,1

 B^h $\overline{1,1}$

0,0

1, 00,0

		B^ℓ	B^m	B^{h}
(r=1)	A_L	1, 1	1, <i>z</i>	1,0
	A_H	1,1	z, z	0,0
(r=0)	A'_L	1,1	1, z	1,0
	A'_H	1,1	z, z	0,0

$$z = \begin{cases} 1, & t = \ell \\ 1, & t = m, \text{ "low trust"} \\ 0, & t = m, \text{ "high trust"} \\ 0, & t = \hbar \end{cases}$$

$$z = \begin{cases} 1, & t = \ell \\ s, & t = m \\ 0, & t = \hbar \end{cases}, \quad s = \mathbb{1}[\theta = L]$$

(r=1)

(r=0)

Figure: Path-of-play conflict behavior, (d_A, d_B)

(r=1)

(r=0)

Non-communication eqm

 B^h Bℓ B^m 1,0 1, 11, z A_L (r=1)1, 10,0 z, z1,0 1, 11, z(r=0 0.0 1, 1z, z

$$z = \begin{cases} 1, & t = \ell \\ 1, & t = m, \text{ "low trust"} \\ 0, & t = m, \text{ "high trust"} \\ 0, & t = \hbar \end{cases}$$

$$z = \begin{cases} 1, & t = \ell \\ s, & t = m \\ 0, & t = \hbar \end{cases} \quad s = \mathbb{1}[\theta = L]$$

Conclusion

Private communication eqm Bℓ

1, 1

1, 1

1, 1

1.

 B^m

1, 1

0,0

1, z

z, z

 B^h

1, 1

0,0

1,0

0,0

Figure: Path-of-play conflict behavior, (d_A, d_B)

Non-communication eqm

Private communication eqm Bℓ

1, 1

1, 1

 B^m

0.0

1, z

z, z

1, 1 | 1, 1

 B^h

1,1

0,0

1, 00,0

		B^{ℓ}	B^m	B^{h}
(r=1)	A_L	1, 1	1, <i>z</i>	1,0
	A_H	1,1	<i>z</i> , <i>z</i>	0,0
(r=0)	A'_L	1, 1	1, <i>z</i>	1,0
	A'_H	1,1	z, z	0,0

$$z = \begin{cases} 1, & t = \ell \\ 1, & t = m, \text{ "low trust"} \\ 0, & t = m, \text{ "high trust"} \\ 0, & t = \hbar \end{cases}$$

$$z = \begin{cases} 1, & t = \ell \\ s, & t = m \\ 0, & t = \hbar \end{cases} \quad s = \mathbb{1}[\theta = L]$$

(r=1)

(r=0)

Figure: Path-of-play conflict behavior, (d_A, d_B)

Non-communication eqm

Private communication eqm B^ℓ

 B^m

1. z

 B^h

1.0

		B^ℓ	B^m	B^{h}
(r=1)	A _L A _H	1, 1		1,0
			z, z	0,0
(r=0)	A'_L	1,1	1, z	1,0
	A'_H	1,1	z, z	0,0

$$\frac{(r=0)}{A'_{H}} \frac{L}{1, 1} \frac{J}{z, z} \frac{J}{0, 0}$$
$$z = \begin{cases} 1, t = \ell \\ s, t = m, s = \mathbb{I}[\theta = L] \end{cases}$$

1.1

Α',

$$z = \begin{cases} 1, & t = \ell \\ 1, & t = m, \text{ "low trust"} \\ 0, & t = m, \text{ "high trust"} \\ 0, & t = h \end{cases}$$

$$z = \begin{cases} 1, & t = \ell \\ s, & t = m \\ 0, & t = \hbar \end{cases} \quad s = \mathbb{1}[\theta = L]$$

(r=1)

 A_H incentive for non-provocation (s = 0):

 A_H incentive for non-provocation (s = 0):

politically advantageous, and improves conflict payoffs

 A_H incentive for non-provocation (s = 0):

- politically advantageous, and improves conflict payoffs
- A_L incentive for provocation (s = 1):

 A_H incentive for non-provocation (s = 0):

politically advantageous, and improves conflict payoffs

 A_L incentive for provocation (s = 1):

- B mobilizing is strictly harmful, for A_L 's conflict payoffs
- but, demonstrates to audience that B poses a threat
 - ▶ so they need a leader like *A*, to manage the threat
- beneficial for A_L if office-holding value ψ large

 B^m following A's message:

Overview

 B^m following A's message:

- if he learns that A is type A_H (given message s = 0):
 - can help A_H survive in office, by showing D he is not a threat
 - if conflict can be avoided, mobilizing is unnecessary

 B^m following A's message:

- if he learns that A is type A_H (given message s = 0):
 - can help A_H survive in office, by showing D he is not a threat
 - if conflict can be avoided, mobilizing is unnecessary
- if he learns that A is type A_L (given message s = 1):
 - ▶ possible that he could undermine A_L and get A'_H , but unlikely
 - conflict is likely, so better to be prepared

B^m following A's message:

- if he learns that A is type A_H (given message s = 0):
 - can help A_H survive in office, by showing D he is not a threat
 - if conflict can be avoided, mobilizing is unnecessary
- if he learns that A is type A_L (given message s = 1):
 - possible that he could undermine A_L and get A'_H , but unlikely
 - conflict is likely, so better to be prepared
- both conditions satisfied if c_B^m in intermediate range
 - \implies message is influential, z = s

What if A's message to B is public (observable by D)?

Overview

What if A's message to B is public (observable by D)?

Equilibrium with public communication

Suppose office-holding incentives are dominant ($\psi \to \infty$). Suppose $\pi^{\ell} > \pi^{\hbar}$. Then there exists an equilibrium similar to the private communication equilibrium, with the following exceptions:

- A_H mixes her messages, with $Pr(s = 1) = \frac{1-\tau}{\tau}$
- If D observes $(s = 1, x = \tilde{H})$, then D retains A with

$$Pr(r=1) = \frac{1}{\tau} \left(\pi^h + \tau \pi^m - (1-\tau)\pi^l \right)$$

If $\pi^{\ell} < \pi^{h}$, a symmetrical equilibrium exists.

D prefers mutual cooperation over conflict. Why do they let A get away with provocative behavior?

D prefers mutual cooperation over conflict.

Why do they let A get away with provocative behavior?

- Because D is prospective
 - doesn't matter who "started" the conflict, or who is "responsible" for the onset of tensions
- Provocation + mobilization \implies cooperation impossible
 - Given that conflict is inevitable, D wants leader who can manage it most effectively

D prefers mutual cooperation over conflict.

Why do they let A get away with provocative behavior?

- Because D is prospective
 - doesn't matter who "started" the conflict, or who is "responsible" for the onset of tensions
- Provocation + mobilization \implies cooperation impossible
 - Given that conflict is inevitable, D wants leader who can manage it most effectively

Implication: A_L does not have to "deceive" her audience

can provoke openly, and still be politically rewarded for it

Influential communication

To summarize:

• A and B collude against A's domestic opposition, to extract a divisible benefit

Influential communication

To summarize:

- A and B collude against A's domestic opposition, to extract a divisible benefit
 - A gives B a security benefit:
 - lets B know whether he should or shouldn't mobilize

Influential communication

To summarize:

- A and B collude against A's domestic opposition, to extract a divisible benefit
 - A gives B a security benefit:
 - lets B know whether he should or shouldn't mobilize
 - *B* gives *A* a political benefit:
 - helps convince A's audience that A is the right type of leader for the moment
Influential communication

To summarize:

- A and B collude against A's domestic opposition, to extract a divisible benefit
 - A gives B a security benefit:
 - lets B know whether he should or shouldn't mobilize
 - B gives A a political benefit:
 - helps convince A's audience that A is the right type of leader for the moment
- communication allows them to coordinate their actions to realize these benefits

Franco-Prussian War, 1870:

- Bismarck (A) wanted smaller German states (D) to support unification under Prussia (r = 1)
 - needed to demonstrate that French Emperor Napoleon III (B) had hostile intent

Conclusion 23 / 26

Franco-Prussian War, 1870:

- Bismarck (A) wanted smaller German states (D) to support unification under Prussia (r = 1)
 - needed to demonstrate that French Emperor Napoleon III (B) had hostile intent
- Ems Dispatch (s = 1):
 - costless message that communicated Bismarck's hostile intent

Franco-Prussian War, 1870:

- Bismarck (A) wanted smaller German states (D) to support unification under Prussia (r = 1)
 - needed to demonstrate that French Emperor Napoleon III (B) had hostile intent
- Ems Dispatch (s = 1):
 - costless message that communicated Bismarck's hostile intent
- France "mobilizing" (z = 1):
 - initiating war on its own timeline, rather than waiting
 - advantageous for France—power shifting towards Prussia

Franco-Prussian War, 1870:

- Bismarck (A) wanted smaller German states (D) to support unification under Prussia (r = 1)
 - needed to demonstrate that French Emperor Napoleon III (B) had hostile intent
- Ems Dispatch (s = 1):
 - costless message that communicated Bismarck's hostile intent
- France "mobilizing" (z = 1):
 - initiating war on its own timeline, rather than waiting
 - advantageous for France—power shifting towards Prussia

(Complication: Napoleon had his own domestic politics, and wanted Bismarck to initiate the war...)

South Korean martial law episode, 2024:

- ▶ Yoon government (A) wanted to overcome domestic gridlock
 - needed to demonstrate to public that NK (B) was a threat

Conclusion 24 / 26

South Korean martial law episode, 2024:

- ▶ Yoon government (A) wanted to overcome domestic gridlock
 - needed to demonstrate to public that NK (B) was a threat
- "Provoke the North's attack at the NLL" (s = 1)
 - drone flights dropping propaganda leaflets
 - shooting down trash balloons

Conclusion 24 / 26

South Korean martial law episode, 2024:

- ▶ Yoon government (A) wanted to overcome domestic gridlock
 - needed to demonstrate to public that NK (B) was a threat
- "Provoke the North's attack at the NLL" (s = 1)
 - drone flights dropping propaganda leaflets
 - shooting down trash balloons
- Provocation unsuccessful; Kim Jong Un did not mobilize
 - Yoon's martial law attempt failed, because no external threat
 - Kim Jong Un not actually a hostile type $(t \neq \ell)$?
 - (relative to prior expectations)

Contribution

Distinction from audience costs:

- message is intended to provoke, rather than deter as in AC
- message can be private or public

Contribution

Distinction from audience costs:

- message is intended to provoke, rather than deter as in AC
- message can be private or public

Distinction from diversionary war:

- insufficient for A to show hawkishness / competence in conflict
- must also show that the international environment (i.e. B's type) makes those attributes valuable

Contribution

Distinction from audience costs:

- message is intended to provoke, rather than deter as in AC
- message can be private or public

Distinction from diversionary war:

- insufficient for A to show hawkishness / competence in conflict
- must also show that the international environment (i.e. B's type) makes those attributes valuable

Novel mechanism of cheap-talk diplomacy between adversaries:

coordinating action to collude against a third party

Thank you!

- Matt Malis, Texas A&M University
- Comments welcome and appreciated: malis@tamu.edu