Collusion Among Adversaries

Matt Malis

Formal Models of Conflict Conference University of Pittsburgh 17 October 2025

Slides: mattmalis.github.io/slides

Intuitive logic of provocation:

- ▶ A wants conflict, but wants B to make the first move
- ► A says or does something (essentially costless) to "provoke" B
- ► B attacks, fighting ensues

Intuitive logic of provocation:

- ▶ A wants conflict, but wants B to make the first move
- ► A says or does something (essentially costless) to "provoke" B
- B attacks, fighting ensues

Historical examples:

- Franco-Prussian War, 1870
 - Ems Dispatch: "effect of a red rag upon the Gallic bull"

Intuitive logic of provocation:

- A wants conflict, but wants B to make the first move
- ► A says or does something (essentially costless) to "provoke" B
- B attacks, fighting ensues

Historical examples:

- Franco-Prussian War, 1870
 - Ems Dispatch: "effect of a red rag upon the Gallic bull"
- South Korean martial law episode, 2024
 - "provoke the North's attack at the NLL [Northern Limit Line]"

Cases

Intuitive logic of provocation:

- A wants conflict, but wants B to make the first move
- ► A says or does something (essentially costless) to "provoke" B
- B attacks, fighting ensues

Historical examples:

- Franco-Prussian War, 1870
 - Ems Dispatch: "effect of a red rag upon the Gallic bull"
- South Korean martial law episode, 2024
 - "provoke the North's attack at the NLL [Northern Limit Line]"
- US entry into WWII; Gulf of Tonkin; Iraq invasion

Puzzle:

- ▶ How can it be both in A's interest to provoke B...
 - ...and in B's interest to be provoked?

Puzzle:

- ▶ How can it be both in A's interest to provoke B...
 - ...and in B's interest to be provoked?
- How can costless communication between adversaries influence conflict behavior?

Overview

This model:

- ▶ A wants support from a third party (domestic audience, ally, etc) for conflict against B
 - needs to convince them that B has hostile intent

Overview

This model:

- ▶ A wants support from a third party (domestic audience, ally, etc) for conflict against B
 - needs to convince them that B has hostile intent
- ▶ Through cheap-talk provocation, *A* induces *B* to take an action which:
 - ▶ improves B's conflict payoffs
 - makes B more likely to fight
 - ▶ makes the third party support A's choice to fight

Overview

This model:

- ▶ A wants support from a third party (domestic audience, ally, etc) for conflict against B
 - needs to convince them that B has hostile intent
- ▶ Through cheap-talk provocation, *A* induces *B* to take an action which:
 - improves B's conflict payoffs
 - makes B more likely to fight
 - makes the third party support A's choice to fight

⇒ the adversary leaders collude to manipulate the third party's behavior

Contribution

Distinction from audience costs:

- message is intended to provoke, rather than deter as in AC
- message can be private or public

Contribution

Distinction from audience costs:

- message is intended to provoke, rather than deter as in AC
- message can be private or public

Distinction from diversionary war:

- ▶ insufficient for *L* to show hawkishness / competence in conflict
- must also show that the international environment (i.e. F's type) makes those attributes valuable

Contribution

Distinction from audience costs:

- message is intended to provoke, rather than deter as in AC
- message can be private or public

Distinction from diversionary war:

- ▶ insufficient for *L* to show hawkishness / competence in conflict
- must also show that the international environment (i.e. F's type) makes those attributes valuable

Novel mechanism of cheap-talk diplomacy between adversaries:

coordinating action to collude against a third party

Outline:

- Model setup
- ▶ Benchmark: no communication
- ▶ Private communication
- ▶ Public communication
- Cases

Players L (she), D (they), F (he):

- ▶ leader L and domestic actor D within Home country H
- ► foreign leader *F* (unitary actor)

Players L (she), D (they), F (he):

- ▶ leader *L* and domestic actor *D* within Home country *H*
- ▶ foreign leader F (unitary actor)

Sequence:

• types θ_L , θ_F realized, obs. privately

Players L (she), D (they), F (he):

- ▶ leader *L* and domestic actor *D* within Home country *H*
- ► foreign leader *F* (unitary actor)

- types θ_L , θ_F realized, obs. privately
- L: private message to F, provocative (s = 1) or reassuring (s = 0)

Players L (she), D (they), F (he):

- ▶ leader *L* and domestic actor *D* within Home country *H*
- foreign leader F (unitary actor)

- types θ_L , θ_F realized, obs. privately
- L: private message to F, provocative (s = 1) or reassuring (s = 0)
- F: mobilize $(r_F = 1)$ or not $(r_F = 0)$

Players L (she), D (they), F (he):

- ▶ leader L and domestic actor D within Home country H
- foreign leader F (unitary actor)

- types θ_L , θ_F realized, obs. privately
- L: private message to F, provocative (s = 1) or reassuring (s = 0)
- F: mobilize $(r_F = 1)$ or not $(r_F = 0)$
- ▶ D: mobilize in support of $L(r_H = 1)$ or not $(r_H = 0)$

Players L (she), D (they), F (he):

- ▶ leader L and domestic actor D within Home country H
- ► foreign leader *F* (unitary actor)

- types θ_L , θ_F realized, obs. privately
- L: private message to F, provocative (s = 1) or reassuring (s = 0)
- F: mobilize $(r_F = 1)$ or not $(r_F = 0)$
- ▶ D: mobilize in support of $L(r_H = 1)$ or not $(r_H = 0)$
- ▶ L and F (simultaneously): take aggressive action $(a_i = 1)$ or not $(a_i = 0)$

Conflict overview:

- ► Conflict with strategic complements
 - Baliga & Sjöstrom (2012); Kydd (1997, 2000, 2005); Schultz (2005)

Cases

Conflict overview:

- Conflict with strategic complements
 - Baliga & Sjöstrom (2012); Kydd (1997, 2000, 2005); Schultz (2005)
- L and F each uncertain whether the other has SH preferences (θ_i low) or PD preferences (θ_i high)

Conflict overview:

- Conflict with strategic complements
 - Baliga & Sjöstrom (2012); Kydd (1997, 2000, 2005); Schultz (2005)
- L and F each uncertain whether the other has SH preferences (θ_i low) or PD preferences (θ_i high)
- D has SH preferences
 - only wants to mobilize if conflict is inevitable
 - doesn't want to increase risk of conflict by mobilizing

Conflict overview:

- Conflict with strategic complements
 - Baliga & Sjöstrom (2012); Kydd (1997, 2000, 2005); Schultz (2005)
- L and F each uncertain whether the other has SH preferences (θ_i low) or PD preferences (θ_i high)
- D has SH preferences
 - only wants to mobilize if conflict is inevitable
 - doesn't want to increase risk of conflict by mobilizing
- Each side wants the other side to not attack

	$a_F = 0$	$a_F = 1$
$a_H = 0$	0, 0	
$a_H = 1$		

	$a_F = 0$	$a_F = 1$
$a_H = 0$	0, 0	$-\lambda$,
$a_H = 1$	$\alpha + w_i(\theta, r),$	$w_i(\theta,r),$

$$w_D(\theta, r) = -\kappa + r_H \delta \phi$$
, for $\phi > 0$

•
$$w_D(\theta, r) = -\kappa + r_H \delta \phi$$
, for $\phi > 0$
• $w_L(\theta, r) = -\kappa + r_H \delta + \theta_L$

- private types θ_L , θ_F , with $\theta_i \sim G_i(\cdot)$ on $[\underline{\theta}_i, \overline{\theta}_i]$:
 - each leader's willingness to take the aggressive action (or, dissatisfaction with SQ)
 - ▶ for L: preference divergence from D

	$a_F = 0$	$a_F = 1$
$a_H = 0$	0, 0	$-\lambda$,
$a_H = 1$	$\alpha + w_i(\theta, r),$	$w_i(\theta, r),$

•
$$w_D(\theta, r) = -\kappa + r_H \delta \phi$$
, for $\phi > 0$

$$\mathbf{w}_{L}(\theta, r) = -\kappa + r_{H}\delta + \theta_{L}$$

- ▶ private types θ_L , θ_F , with $\theta_i \sim G_i(\cdot)$ on $[\underline{\theta}_i, \overline{\theta}_i]$:
 - each leader's willingness to take the aggressive action (or, dissatisfaction with SQ)
 - ▶ for *L*: preference divergence from *D*
- $ightharpoonup r_H, r_L$: mobilization/preparation for conflict
- δ : benefit from mobilizing (reduction in conflict costs)
- \triangleright λ : cost of being attacked without fighting back
- $\triangleright \alpha$: benefit of taking advantage of opponent

	$a_F = 0$	$a_F = 1$
$a_H = 0$	0, 0	$-\lambda, \\ \alpha + w_F(\theta, r)$
$a_H = 1$	$\alpha + w_i(\theta, r),$ $-\lambda$	$w_i(\theta, r),$ $w_F(\theta, r)$

•
$$w_D(\theta, r) = -\kappa + r_H \delta \phi$$
, for $\phi > 0$

•
$$w_L(\theta, r) = -\kappa + r_H \delta + \theta_L$$

•
$$w_F(\theta, r) = -\kappa + r_F \delta + \theta_F$$

- ▶ private types θ_L , θ_F , with $\theta_i \sim G_i(\cdot)$ on $[\underline{\theta}_i, \overline{\theta}_i]$:
 - each leader's willingness to take the aggressive action (or, dissatisfaction with SQ)
 - ▶ for *L*: preference divergence from *D*
- $ightharpoonup r_H, r_L$: mobilization/preparation for conflict
- δ : benefit from mobilizing (reduction in conflict costs)
- \triangleright λ : cost of being attacked without fighting back
- α : benefit of taking advantage of opponent

	$a_F = 0$	$a_F = 1$
$a_H = 0$	0, 0	$ \begin{array}{c} -\lambda, \\ \alpha + w_F(\theta, r) \end{array} $
$a_H = 1$	$\alpha + w_i(\theta, r), \\ -\lambda$	$w_i(\theta, r),$ $w_F(\theta, r)$

- $w_D(\theta, r) = -\kappa + r_H \delta \phi, \text{ for } \phi > 0$ $w_L(\theta, r) = -\kappa + r_H \delta + \theta_L$ $w_F(\theta, r) = -\kappa + r_F \delta + \theta_F$

	$a_F = 0$	$a_F = 1$
$a_H = 0$	0, 0	$\begin{vmatrix} -\lambda, \\ \alpha + w_F(\theta, r) \end{vmatrix}$
$a_H = 1$	$\alpha + w_i(\theta, r), \\ -\lambda$	$w_i(\theta, r),$ $w_F(\theta, r)$

$$w_D(\theta, r) = -\kappa + r_H \delta \phi, \text{ for } \phi > 0$$

$$w_L(\theta, r) = -\kappa + r_H \delta + \theta_L$$

$$w_F(\theta, r) = -\kappa + r_F \delta + \theta_F$$

•
$$w_L(\theta, r) = -\kappa + r_H \delta + \theta_L$$

$$\mathbf{w}_{F}(\theta, \mathbf{r}) = -\kappa + r_{F}\delta + \theta_{F}$$

•
$$\lambda > \kappa$$
: D prefers $a = (1,1)$ over $a = (0,1)$ (even if $r_H = 0$)

	$a_F = 0$	$a_F = 1$
$a_H = 0$	0, 0	$-\lambda, \\ \alpha + w_F(\theta, r)$
$a_H = 1$	$\begin{vmatrix} \alpha + w_i(\theta, r), \\ -\lambda \end{vmatrix}$	$w_i(\theta, r), \ w_F(\theta, r)$

$$w_D(\theta, r) = -\kappa + r_H \delta \phi, \text{ for } \phi > 0$$

$$w_L(\theta, r) = -\kappa + r_H \delta + \theta_L$$

$$w_F(\theta, r) = -\kappa + r_F \delta + \theta_F$$

•
$$w_L(\theta, r) = -\kappa + r_H \delta + \theta_L$$

$$\mathbf{w}_{F}(\theta, \mathbf{r}) = -\kappa + r_{F}\delta + \theta_{F}$$

•
$$\lambda > \kappa$$
: D prefers $a = (1,1)$ over $a = (0,1)$ (even if $r_H = 0$)

•
$$\kappa > \delta$$
: D prefers $a = (0,0)$ over $a = (1,1)$ (even if $r_H = 1$)

	$a_F = 0$	$a_F = 1$
$a_H = 0$	0, 0	$ \begin{array}{c} -\lambda, \\ \alpha + w_F(\theta, r) \end{array} $
$a_H = 1$	$\begin{vmatrix} \alpha + w_i(\theta, r), \\ -\lambda \end{vmatrix}$	$w_i(\theta, r),$ $w_F(\theta, r)$

$$w_D(\theta, r) = -\kappa + r_H \delta \phi, \text{ for } \phi > 0$$

$$w_L(\theta, r) = -\kappa + r_H \delta + \theta_L$$

$$w_F(\theta, r) = -\kappa + r_F \delta + \theta_F$$

$$\mathbf{w}_{L}(\theta, \mathbf{r}) = -\kappa + \mathbf{r}_{H}\delta + \theta_{L}$$

$$\mathbf{w}_{F}(\theta, \mathbf{r}) = -\kappa + r_{F}\delta + \theta_{F}$$

- $\lambda > \kappa$: D prefers a = (1,1) over a = (0,1) (even if $r_H = 0$)
- $\kappa > \delta$: D prefers a = (0,0) over a = (1,1) (even if $r_H = 1$)
- $\delta > \alpha$: better to prepare in advance $(r_i = 1)$ than catch your opponent off-guard

	$a_F = 0$	$a_F = 1$
$a_H = 0$	0, 0	$ \begin{array}{c} -\lambda, \\ \alpha + w_F(\theta, r) \end{array} $
$a_H = 1$	$\begin{array}{c c} \alpha + w_i(\theta, r), \\ -\lambda \end{array}$	$w_i(\theta, r),$ $w_F(\theta, r)$

$$w_D(\theta, r) = -\kappa + r_H \delta \phi$$
, for $\phi > 0$

$$\mathbf{w}_{L}(\theta, \mathbf{r}) = -\kappa + \mathbf{r}_{H}\delta + \theta_{L}$$

•
$$w_D(\theta, r) = -\kappa + r_H \delta \phi$$
, for $\phi > 0$
• $w_L(\theta, r) = -\kappa + r_H \delta + \theta_L$
• $w_F(\theta, r) = -\kappa + r_F \delta + \theta_F$

- $\lambda > \kappa$: D prefers a = (1,1) over a = (0,1) (even if $r_H = 0$)
- $\kappa > \delta$: D prefers a = (0,0) over a = (1,1) (even if $r_H = 1$)
- $\delta > \alpha$: better to prepare in advance $(r_i = 1)$ than catch your opponent off-guard

Also assume: $\theta_i - \kappa > -\lambda$

• even the most conflict-averse i prefers $a_i = 1$ if $a_i = 1$

	$a_F = 0$	$a_F=1$
$a_H = 0$	0, 0	$-\lambda, \\ \alpha + w_F(\theta, r)$
$a_H = 1$	$\alpha + w_i(\theta, r), \\ -\lambda$	$w_i(\theta, r), \ w_F(\theta, r)$

•
$$w_D(\theta, r) = -\kappa + r_H \delta \phi$$
, for $\phi > 0$

•
$$w_L(\theta, r) = -\kappa + r_H \delta + \theta_L$$

•
$$w_D(\theta, r) = -\kappa + r_H \delta \phi$$
, for $\phi > 0$
• $w_L(\theta, r) = -\kappa + r_H \delta + \theta_L$
• $w_F(\theta, r) = -\kappa + r_F \delta + \theta_F$

All results depend on $\phi < \bar{\phi}$

- $ightharpoonup r_H$ as political support that benefits L, or a transfer from D to L
 - justification: D can't just lower their own conflict costs "for free"
- if ϕ too high, it becomes too attractive for D to mobilize and push the countries into conflict

10 / 24

Interpretations of L/D relationship

L	D
Leader	Voter / domestic constituency

Model Setup Non-Communication Eqm Communication Eqm Cases

Interpretations of L/D relationship

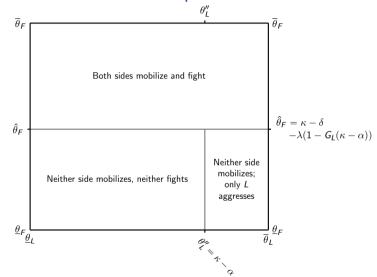
L	D
Leader	Voter / domestic constituency
Executive	Legislature

Model Setup Non-Communication Eqm Communication Eqm Cases

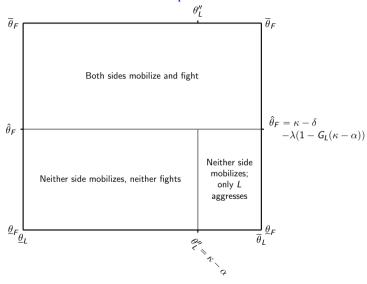
Interpretations of L/D relationship

L	D
Leader	Voter / domestic constituency
Executive	Legislature
Protegé state	Patron state

Interpretations of L/D relationship

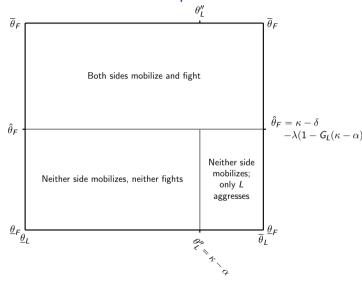

L	D
Leader	Voter / domestic constituency
Executive	Legislature
Protegé state	Patron state
Military leadership	Civilian government

Plan for analysis

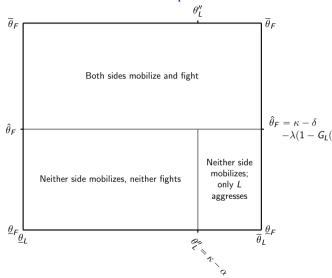

At the conflict stage, the (fight, fight) eqm, a=(1,1), is always supported

• if players anticipate a=(1,1), then both want to prepare, r=(1,1)

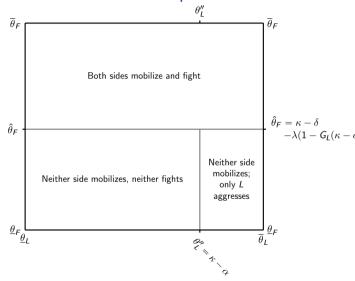
Goal: characterize the most cooperative eqm that can be supported



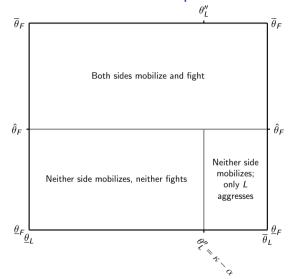
Model Setup


F uncertain re: will L reciprocate cooperation

Model Setup Non-Communication Eqm

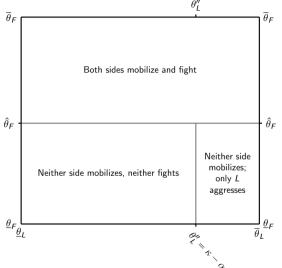

- F uncertain re: will L reciprocate cooperation
- $F: r_F = 1 \iff a_F = 1$

Model Setup



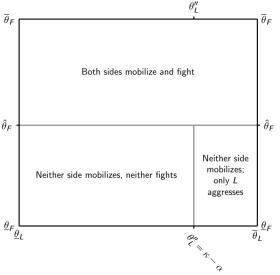
- F uncertain re: will L reciprocate cooperation
- $F: r_F = 1 \iff a_F = 1$
- ightharpoonup D: $r_H = r_F$

Model Setup



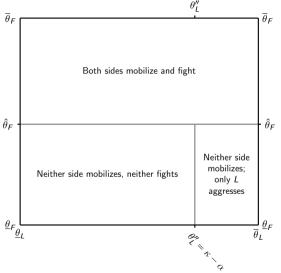
- ► *F* uncertain re: will *L* reciprocate cooperation
- $F: r_F = 1 \iff a_F = 1$
- $D: r_H = r_F$
- L: $a_H = 0$ only if $r_F = 0$ and $\theta_L < \theta_L''$

Model Setup Non-Communication Eqm


Cases

Model Setup

Problems with the non-communication eqm:


Non-Communication Eqm

Problems with the non-communication eqm:

- with low θ_L , high/moderate θ_F :
 - F mobilizes, leading to conflict
 - but everyone would prefer peace

Model Setup Non-Communication Eqm

Problems with the non-communication eqm:

- with low θ_L , high/moderate θ_F :
 - F mobilizes, leading to conflict
 - but everyone would prefer peace
- with high θ_L , low θ_F :
 - conflict is inevitable
 - ▶ but F doesn't prepare
 - ightharpoonup and L doesn't get D's support

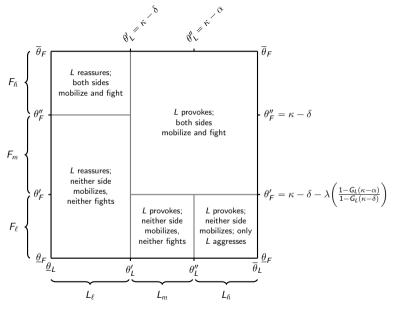
15 / 24

L and F will play cutpoint strategies in θ_i

• L_{ℓ} , or $\theta_L < \theta'_{\ell}$: reassure; and fight only if F mobilizes

15 / 24

- ▶ L_{ℓ} , or $\theta_L < \theta'_L$: reassure; and fight only if F mobilizes
- ▶ L_m , or $\theta_L \in (\theta'_L, \theta''_L)$: provoke; but fight only if D supports


- L_{ℓ} , or $\theta_L < \theta'_I$: reassure; and fight only if F mobilizes
- ▶ L_m , or $\theta_L \in (\theta'_L, \theta''_L)$: provoke; but fight only if D supports
- L_h , or $\theta_L > \theta_L''$: provoke; and fight unconditionally

- L_{ℓ} , or $\theta_L < \theta'_{\ell}$: reassure; and fight only if F mobilizes
- ▶ L_m , or $\theta_L \in (\theta'_L, \theta''_L)$: provoke; but fight only if D supports
- L_h , or $\theta_L > \theta_L''$: provoke; and fight unconditionally
- F_{ℓ} , or $\theta_F < \theta_F'$: never mobilize; and fight only if D mobilized

- ▶ L_{ℓ} , or $\theta_L < \theta'_L$: reassure; and fight only if F mobilizes
- ▶ L_m , or $\theta_L \in (\theta'_L, \theta''_L)$: provoke; but fight only if D supports
- L_h , or $\theta_L > \theta_L''$: provoke; and fight unconditionally
- ▶ F_{ℓ} , or $\theta_F < \theta_F'$: never mobilize; and fight only if D mobilized
- ▶ F_m , or $\theta_F \in (\theta_F', \theta_F'')$: mobilize and fight iff provoked

- L_{ℓ} , or $\theta_L < \theta'_L$: reassure; and fight only if F mobilizes
- ▶ L_m , or $\theta_L \in (\theta'_L, \theta''_L)$: provoke; but fight only if D supports
- L_h , or $\theta_L > \theta_L''$: provoke; and fight unconditionally
- ▶ F_{ℓ} , or $\theta_F < \theta_F'$: never mobilize; and fight only if D mobilized
- ▶ F_m , or $\theta_F \in (\theta_F', \theta_F'')$: mobilize and fight iff provoked
- F_h , or $\theta_F > \theta_F''$: always mobilize and fight

- ▶ L_{ℓ} , or $\theta_L < \theta'_L$: reassure; and fight only if F mobilizes
- ▶ L_m , or $\theta_L \in (\theta'_L, \theta''_L)$: provoke; but fight only if D supports
- L_h , or $\theta_L > \theta_L''$: provoke; and fight unconditionally
- ▶ F_{ℓ} , or $\theta_F < \theta_F'$: never mobilize; and fight only if D mobilized
- F_m , or $\theta_F \in (\theta_F', \theta_F'')$: mobilize and fight iff provoked
- F_h , or $\theta_F > \theta_F''$: always mobilize and fight
- D matches F's action

Mechanism:

- L_m and L_h want D's support for conflict with F
 - ▶ need to convince *D* that *F* is likely to attack, even without *D* supporting conflict

Cases

Mechanism:

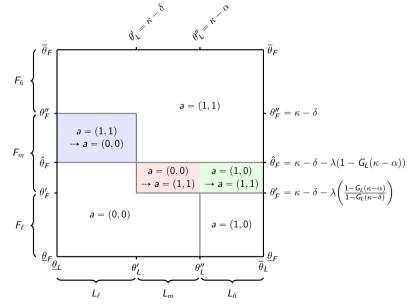
- L_m and L_h want D's support for conflict with F
 - ▶ need to convince *D* that *F* is likely to attack, even without *D* supporting conflict
- ▶ when *F* gets the provocative message:
 - ▶ unsure whether *L* is "bluffing", or *L* would actually attack without *F* mobilizing first

Mechanism:

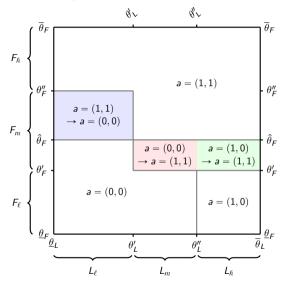
- L_m and L_h want D's support for conflict with F
 - ▶ need to convince *D* that *F* is likely to attack, even without *D* supporting conflict
- ▶ when *F* gets the provocative message:
 - ▶ unsure whether *L* is "bluffing", or *L* would actually attack without *F* mobilizing first
- $ightharpoonup F_m$ mobilizes when provoked
 - even though he knows that doing so will sway D to support

Mechanism:

- L_m and L_h want D's support for conflict with F
 - ▶ need to convince *D* that *F* is likely to attack, even without *D* supporting conflict
- ▶ when *F* gets the provocative message:
 - ▶ unsure whether *L* is "bluffing", or *L* would actually attack without *F* mobilizing first
- $ightharpoonup F_m$ mobilizes when provoked
 - even though he knows that doing so will sway D to support
- D supports conflict iff F mobilizes
 - even though they know *F* is likely reacting to *L*'s provocation

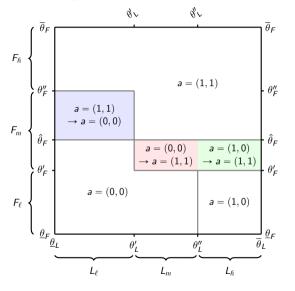

Summary:

- ▶ L can enlist F's help in getting D's support for conflict
 - ▶ L and F "collude" to manipulate D's behavior


Summary:

- ▶ *L* can enlist *F*'s help in getting *D*'s support for conflict
 - ▶ L and F "collude" to manipulate D's behavior
- ▶ Corollary: if L can provoke F, then L can also reassure
 - cheap-talk message can prevent F from attacking

Comparing Private Communication vs. Non-Communication


Comparing Private Communication vs. Non-Communication

If $G_i(\cdot) = [\underline{\theta}, \overline{\theta}]$:
• Pr(a = (0, 0)) is higher with

communication than without

Comparing Private Communication vs. Non-Communication

If $G_i(\cdot) = [\underline{\theta}, \overline{\theta}]$:
• Pr(a = (0, 0)) is higher with communication than without

Other welfare implications coming soon...

Public Communication

Alternative setup:

L sends message publicly, D and F hear

Public Communication

Alternative setup:

► L sends message publicly, D and F hear

Result:

- Either the same behavior (if $\phi < \hat{\phi}$)
- ▶ or the message is strictly *more* effective
 - ▶ (creates more separation in F's mobilization strategy, and thus conflict
- ▶ reason: provocative message increases *D'* belief that conflict is inevitable

Interpretations of L/D relationship

L	D
Leader	Voter / domestic constituency
Executive	Legislature
Protegé state	Patron state
Military leadership	Civilian government

Franco-Prussian War, 1870:

- **Bismarck** (L) wanted smaller German states (D) to unify under Prussia $(r_H = 1)$
 - ▶ needed to demonstrate that French Emperor Napoleon III (F) had hostile intent

Franco-Prussian War, 1870:

- ▶ Bismarck (L) wanted smaller German states (D) to unify under Prussia $(r_H = 1)$
 - ▶ needed to demonstrate that French Emperor Napoleon III (F) had hostile intent
- Ems Dispatch (s = 1):
 - costless message that communicated Bismarck's hostile intent

Franco-Prussian War, 1870:

- **ightharpoonup** Bismarck (L) wanted smaller German states (D) to unify under Prussia ($r_H=1$)
 - ▶ needed to demonstrate that French Emperor Napoleon III (F) had hostile intent
- Ems Dispatch (s = 1):
 - costless message that communicated Bismarck's hostile intent
- France "mobilizing" $(r_F = 1)$:
 - initiating war on its own timeline, rather than waiting
 - advantageous for France—power shifting towards Prussia

Gulf of Tonkin incident, Jul-Aug 1964:

- U.S. taking provocative actions toward North Vietnam
 - ineffective covert activities (34A), commando raids, subversion attempts
 - Navy destroyer, Maddox, on radio harassment patrols
 - North Vietnamese boats attack Maddox $(r_F = 1)$
 - ▶ Johnson then sends Maddox and another ship to be attacked again

Gulf of Tonkin incident, Jul-Aug 1964:

- U.S. taking provocative actions toward North Vietnam
 - ineffective covert activities (34A), commando raids, subversion attempts
 - Navy destroyer, Maddox, on radio harassment patrols
 - North Vietnamese boats attack Maddox $(r_F = 1)$
 - Johnson then sends Maddox and another ship to be attacked again
- ▶ Congress passes Gulf of Tonkin Resolution ($r_H = 1$):
 - authorizing the President to "take all necessary measures to repel any armed attack against the forces of the United States to and to prevent further aggression"

Gulf of Tonkin incident, Jul-Aug 1964:

- U.S. taking provocative actions toward North Vietnam
 - ineffective covert activities (34A), commando raids, subversion attempts
 - Navy destroyer, Maddox, on radio harassment patrols
 - North Vietnamese boats attack Maddox $(r_F = 1)$
 - ▶ Johnson then sends Maddox and another ship to be attacked again
- ▶ Congress passes Gulf of Tonkin Resolution $(r_H = 1)$:
 - authorizing the President to "take all necessary measures to repel any armed attack against the forces of the United States to and to prevent further aggression"
- Resolution substantially reduced Johnson's political cost of future military escalation (δ)

South Korean martial law episode, Dec. 2024:

- ▶ Yoon government (*L*) wanted to overcome domestic gridlock
 - ▶ needed to demonstrate to public that NK (F) was a threat

Model Setup Non-Communication Eqm Communication Eqm Cases

South Korean martial law episode, Dec. 2024:

- ▶ Yoon government (*L*) wanted to overcome domestic gridlock
 - needed to demonstrate to public that NK (F) was a threat
- "Provoke the North's attack at the NLL" (s = 1)
 - drone flights dropping propaganda leaflets
 - shooting down trash balloons

South Korean martial law episode, Dec. 2024:

- ▶ Yoon government (*L*) wanted to overcome domestic gridlock
 - needed to demonstrate to public that NK (F) was a threat
- "Provoke the North's attack at the NLL" (s = 1)
 - drone flights dropping propaganda leaflets
 - shooting down trash balloons
- Provocation unsuccessful; Kim Jong Un did not mobilize
 - Yoon's martial law attempt was overwhelmingly rejected by SK public ($r_H = 0$)
 - did not perceive external threat